Q0. Functions are scaled so that \( f(0) = -f''(0) = 1 \).
0 | 1 | 2 | 3 | 4 | ||
$$ \exp \left( -\frac{1}{2} x^2 \right) $$ | Gauss dist. | |||||
$$ \frac{1}{\cosh x} $$ | Hyperbolic secant | |||||
$$ \frac{1}{\cosh^2 (x / \sqrt{2})} = \tanh' \frac{1}{\sqrt{2}} x $$ | Derivative of Fermi dist. | |||||
$$ \frac{1}{2} + \frac{1}{2} \cos \left( \frac{\pi}{2} x \right) \ \mathrm{if}\ |x| \lt 2, \ 0 \ \mathrm{otherwise}. $$ | Hann window | |||||
$$ \frac{1}{1 + x^2 / 2} = \arctan' \frac{1}{\sqrt{2}} x $$ | Cauchy dist. |
Score: .